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Abstract

The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a
better understanding of the physical processes that trigger critical crack growth in ice
shelves. Finite elements in combination with configurational forces facilitate the anal-
ysis of single surface fractures in ice under various boundary conditions and material5

parameters. The principles of linear elastic fracture mechanics are applied to show the
strong influence of different depth dependent functions for the density and the Young’s
modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is
treated as a compressible solid and the consequences of this choice in comparison to
the predominant incompressible approaches is discussed. The computed stress inten-10

sity factors KI for dry and water filled cracks are compared with critical values KIc from
measurements that can be found in literature.

1 Introduction

Eight of twelve ice shelves in the Antarctic Peninsula have retreated or disintegrated in
the past decades (Cook and Vaughan, 2010; Braun et al., 2009). The processes that15

lead to break-up events at ice shelves are all linked to fracturing of weakened poly-
crystalline ice. Causes for the weakening are surface cracks forming due to bending
stresses at the surface and crevasses, formed by tensile stresses, originating at shear
margins or along the ice front. These cracks might initially be stable, but additional
loads may let them become critical. Our analysis of cracks, based on well established20

fracture mechanical concepts, is focused on simplified scenarios which we derived
from the break-up events that happened at the Wilkins Ice Shelf in 2008/2009 (Braun
et al., 2009).

Fracture mechanical concepts investigate the criticality of cracks by determining the
stress intensity factor KI at the crack tip and comparing it with critical values KIc, ob-25

tained by experiments. Rist et al. (2002) performed three-point-bending and short-rod
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fracture tests on samples taken from a core of the Ronne Ice Shelf that contained
meteoric as well as marine ice. The measured KIc show a strong dependence on den-
sity or porosity, respectively. Further experimental values for KIc were assembled by
Schulson and Duval (2009).

The vertical propagation of crevasses has been investigated for more than 50 yr. Nye5

(1955) argued that crevasses propagate vertically to the point where the normal stress
σxx changes sign. The first one to assume elastic material behavior for the analysis of
vertical crevasses in glaciers was Weertman (1973). He used dislocation distribution
functions to evaluate the characteristics of dry and water filled single crevasses. Smith
(1976) was the first who applied methods of linear elastic fracture mechanics for the10

evaluation of stress intensity factors of dry and water filled surface cracks in ice shelves.
He simplified the crack geometry and boundary conditions (BCs) to facilitate the use
of tabulated values gained from semianalytical methods by Tada et al. (1973) and Sih
(1973). The method of Smith (1976) was adapted and extended by Van der Veen
(1997), who discussed the importance of depth dependent density profiles and Rist15

et al. (2002) who additionally analysed depth dependent tensile stresses. The model
by Rist et al. (2002) has been repeatedly used for the analysis of bottom and subsurface
crevasses, e.g. by Nath and Vaughan (2003) and Luckman et al. (2012), and will be
used here as a benchmark for our finite element simulations.

Stress intensity factors for the analysis of horizontal crack propagation have been20

used by Hammann and Sandhäger (2003) and Hulbe et al. (2010). Hammann and
Sandhäger (2003) used a numerical model of ice shelf dynamics to compute stresses
within the ice shelf that are then used as input for the evaluation of stress intensity
factors. Hulbe et al. (2010) treated the ice as linear elastic solid and used the boundary
element method for the analysis of crack criticality and growth.25

The qualification of a linear elastic model to describe ice rheology for fracture
mechanical purposes is discussed controversially within the glaciological community.
Therefore, different approaches exist, which are used to investigate the flow induced
strain rate and/or stress fields in ice shelves and glaciers and formulate yield stress or
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strain rate criteria for the nucleation and propagation of cracks. Larour et al. (2004)
and Albrecht and Levermann (2011) analyse the evolution of crevasse fields or single
crevasses based on ice dynamical simulations. Fracture is then understood as a soft-
ening parameter or an enhancement factor (Humbert et al., 2009) leading to higher
velocities within the ice shelf or glacier. These methods require less knowledge about5

the material parameters of the ice and are a valid approximation for fields of closely
spaced crevasses, where the stress concentration at the crack tip is reduced. However,
this approach does not provide a physical examination of fracture processes which is
the purpose of our analysis.

This study investigates the effect of different BCs, loads, density profiles, Young’s10

moduli and Poisson’s ratios on the criticality of a single surface crevasse. For this
purpose, the adequate model is presented in Sect. 2. The plane strain model with the
corresponding equations is introduced in Sect. 2.1. Sections 2.2 and 2.3 explain the
finite element discretization and the resulting discrete configurational forces. Valid BCs
and a satisfying numerical model are identified in Sects. 2.4 and 2.5 followed by the15

validation using the well known model of Rist et al. (2002) in Sect. 2.6.
The results of the numerical simulations are presented and discussed in Sect. 3 and

4. In Sect. 3, we study the influence of depth varying material properties on the stress
intensity factor of dry cracks. For this purpose, we first show the effect of different BCs
in Sect. 3.1. The results for the different varied material parameters are presented in20

Sect. 3.2 to 3.4. Two scenarios for water filled cracks are discussed in Sect. 4 followed
be the summary in Sect. 5.

2 Model

In order to analyse the dependence of the criticality at the crack tip on different depth
dependent material parameters and various BCs, Finite Element (FE) simulations are25

used. This provides the basis for further simulations with advanced 2-D and 3-D ge-
ometries. The advantage of the FE method in comparison to semi-analytical methods
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or other numerical methods like Finite Differences lies primarily in its flexibility and in
its selectable accuracy via mesh refinement.

2.1 Basic equations

Our analysis of the criticality of certain crack scenarios is based on the evaluation of
the crack driving force at the tip of a sharp Griffith crack (Lawn and Wilshaw, 1993),5

where the maximum distance between the crack faces is much smaller than the crack
depth. Thus, we consider a static, linear elastic plane strain model of an edge crack as
depicted in Fig.1a. The equation for the solution of the boundary value problem for a
linear elastic solid in equilibrium is

divσ+ f =0, (1)10

with the volume forces f and the Cauchy stress σ . The Cauchy stress is obtained by
the constitutive equation

σ =Cε, (2)

where C is the stiffness tensor and ε is the symmetric part of the displacement gradient

ε=∇su=
1
2

(
∇u+ (∇u)T

)
. (3)15

For the isotropic case, the stiffness tensor C depends on only two independent con-
stants, the Young’s modulus E and the Poisson’s ratio ν. For further details see any
textbook on elasticity or fracture mechanics, e.g. Gross and Seelig (2011). The solution
of Eq. (1) with Eq. (2) and Eq. (3) in conjunction with proper BCs yields the displace-
ments u and the stress field σ , which are required for the subsequent calculation of the20

crack driving force and the stress intensity factor.
For the evaluation of the crack driving force, configurational forces are used. Con-

figurational forces can be interpreted as a negative energy release rate. The benefit
of configurational forces in comparison with e.g. the J-integral is, that these forces can
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be evaluated at every nodal point within the FE mesh. They provide a measure for the
integrity of the material structure and allow the consideration of inclusions, cracks or
inhomogeneous changes of material properties. The evaluation of the configurational
forces follows the method presented in Müller et al. (2002). Here, the authors introduce
the Eshelby stress tensor5

Σ=U1− (∇u)Tσ (4)

as a function of the strain energy, U = 1
2ε : (Cε)1, the identity tensor 1, the transposed

displacement gradient (∇u)T and the Cauchy stress tensor σ . With the definition of a
configurational volume force

g=gvol+ginh, (5)10

the configurational balance equation can be written as

divΣ+gvol+ginh =0. (6)

The configurational volume force g
vol considers the contribution of the physical vol-

ume force f to the configurational force balance

gvol =−(∇u)T f , (7)15

while the contributions of inhomogeneous material properties as e.g. due to a spatial
dependence of C=C(x,y), are given by

ginh =− ∂U
∂x

∣∣∣∣
inh

=−1
2
ε :

(
∂C
∂x

ε

)
. (8)

Insertion of Eqs. (4), (7) and (8) in Eq. (6) leads to

div(U1− (∇u)Tσ )− (∇u)T f− 1
2
ε :

(
∂C
∂x

ε

)
=0, (9)20

a form of the configurational balance equation that holds within the boundaries of a
continuous material.

1
A :B=Ai jBi j represents the scalar product of two second order tensors.
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2.2 Finite element discretization

The solution of Eq. (1) is obtained by using the FE method. For this purpose, Eq. (1) is
transformed into the weak form by multiplication with a test function η and integration
over the body B,∫
B

(divσ+ f) ·η dV =0. (10)5

Integration by parts with application of the Gauss’ theorem leads to∫
B
σ :∇sη dV =

∫
∂Bt

t∗ ·η dA +
∫
B
f ·η dV, (11)

with the applied traction vector t∗ =σ ·n on the stress boundaries ∂Bt. FE discretization
of the test function and the displacement vector u yields

η=
∑
I

NIηI , ∇sη=
∑
I

∇sNIηI , u=
∑
J

NJuJ , ∇su=
∑
J

∇sNJuJ , (12)10

where NI and NJ are the standard shape functions for the applied elements. Insertion
of Eq. (12) in Eq. (11) results in∑
I

ηI

∫
B

(∇sNI )
TC

∑
J

(∇sNJ )uJdV =
∑
I

ηI

(∫
∂Bt

NIt
∗dA +

∫
B
NIfdV

)
. (13)

The integral on the left hand side represents the vector of internal forces (F int
I ) and

the integrals on the right hand side the vector of the external (F ext
I ) and volume forces15

(F vol
I ), respectively. The solution of the residual equation

FI (uJ )=−F int
I +F

ext
I +F

vol
I =0 (14)

provides the nodal displacements uJ .
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The discretization of Eq. (9) follows analogous. Using the function φ with φ= 0 on
∂B as test function, the weak form of Eq. (9) takes the form∫
B

(U1− (∇u)Tσ ) :∇φ dV +
∫
B

(
(∇u)T f

)
·φ dV +

∫
B

(
1
2
ε :

(
∂C
∂x

ε

))
·φ dV =0. (15)

The FE discretization of the test functions leads to∫
B

(∇NI )
T (U1− (∇u)Tσ ) dV︸ ︷︷ ︸

G
int
I

+
∫
B
NI

(
(∇u)T f

)
dV︸ ︷︷ ︸

−G
vol
I

+
∫
B
NI

(
1
2
ε :

(
∂C
∂x

ε

))
dV︸ ︷︷ ︸

−G
inh
I

=−GI . (16)5

As residual equation, Eq. (16) can be written as

GI (uJ )=−Gint
I +G

vol
I +G

inh
I . (17)

2.3 Interpretation of discrete configurational forces

With the application of FE, the continuous Eq. (9) is transformed into a discrete form,
where GI (uJ ) 6=0 is a measure for the discontinuity at every node of the FE mesh. The10

measure of the discontinuity at the crack tip (index “ct”) can be interpreted as the crack
driving force G=Gct(uJ ).

From the predominant vertical component of the crack driving force at the crack tip,
Gy =G ·ey , the stress intensity factor KI is calculated using the interrelation

KI =

√
Gy

E
1−ν2

. (18)15

Further information on configurational forces, stress intensity factors and their relation
can be found in Müller et al. (2002), Gross and Seelig (2011), Maugin (1993), Stein-
mann and Maugin (2010), Gurtin (1999) and Kienzler and Herrmann (2000).
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2.4 Geometry, load and boundary conditions

In reality, the ice shelf is subjected to gravity, as well as to different boundary trac-
tions (tension, pressure and shear). The modeled ice shelf consists of a vertical cut
through an “infinite” ice shelf, which is replaced by a sufficiently long rectangular do-
main (l =2000 m, b=250 m) under plane strain conditions, see Fig. 1a. The model5

only considers the gravity induced pressure and tensile stresses due to the ice flow.
In-plane-shear is neglected as fractures tend to align perpendicular to the first principal
stress direction, which is shear free. In a sufficient distance from the grounding line,
the horizontal velocities and displacements in an ice shelf are depth-independent. This
constraint can not be fulfilled using traction BCs at the vertical boundaries, as those10

would allow bending. Therefore, unless stated differently, the vertical boundaries are
loaded with prescribed vertically constant displacements ∆u. Using Hooke’s law for
an uncracked homogeneous body under uniaxial tension, σ =E ′ε, with E ′ =Eice in the
case of plane stress and E ′ =Eice/(1−ν2) for plane strain, the magnitude of the bound-
ary displacement ∆u on one side of the model ice shelf is related to the normal stress15

σ at the ice shelf surface by

∆u=ε
l
2
=
σ(1−ν2)

Eice

l
2
. (19)

The stress field at the ice shelf surface is evaluated from the flow velocity in the ice
shelf using Glen’s flow law (Glen, 1958). The bottom boundary is loaded by the water
pressure at the respective depth of the undeformed body. Further traction BCs are20

eventually applied on the crack faces to consider water filled crevasses.

2.5 Numerical model

The stresses and displacements in the rectangular domain are determined by solving
Eqs. (1)–(3), using the commercial FE program COMSOL2. The crack driving force

2www.comsol.com
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and the resulting stress intensity factors are evaluated in postprocessing routines in
MATLAB3. As the stress intensity and therefore KI at the crack tip highly depends on
the element size in the vicinity of the crack tip, as well as on the distribution of ele-
ments within the geometry, the appropriate mesh has to be chosen carefully. Figure 1c
shows the difference between the simulated KI at the crack tip and a semianalytical5

solution (Gross and Seelig, 2011, p. 79) for an edge crack under linear loading for dif-
ferent discretizations. The black curve with an element edge length of 0.0125 m at the
crack tip shows satisfying results for reasonable computation time. Computation time
is saved by cutting the model geometry along the crack and using half the geometry
with symmetry BCs. Figure 1b illustrates the discretization assigned to the black curve.10

All simulations are conducted using 6-node triangular elements with quadratic shape
functions.

2.6 Benchmark

The FE model is validated using the geometry and material parameters presented in
Rist et al. (2002). The authors introduce a semianalytical approach for the evaluation of15

stress intensity factors for cracks in ice shelves, taking a 422 m thick part of the Ronne
Ice Shelf as an example. They assume, that the stress intensity factor at the crack tip
depends on the total stress acting on the flaw. Using a usual power law for the ice flow
(Glen, 1958) and balance equations, following Weertman (1957), a distribution of the
normal stress σxx is derived as a function of the vertical position z in the ice shelf:20

σxx(z)=
B

s∫
b
Bdz

g

s∫
b

s∫
z

ρ(z)dz−
g

2ρsw

 s∫
b

ρ(z)dz

2
−g

s∫
z

ρ(z)dz. (20)

3www.mathworks.com
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Here ρ(z) is the depth-dependent density of the ice, which is parametrized by

ρ(z)=
(

918−539 e
z−h
32.5

)
kg m−3, (21)

based on measurements of ice cores.
Further information on the applied temperature and density profile can be found in

Rist et al. (2002). The stress intensity factor KI , based on σxx, is calculated using the5

weight function method (Bueckner, 1970). The normal stress σxx and the resulting
stress intensity factor KI are shown in Fig. 2a. The diagram shows, that the critical
stress intensity factor KIc

, which ranges between (1–4) Pa
√

m (Rist et al., 2002), is
reached at larger depth than the depth where in the uncracked body the normal stress
σxx changes sign. The assumption that cracks will only propagate to a depth where10

the stresses change sign, as presented by Nye (1955), turns out to be an underesti-
mation. Figure 2b shows a comparison of the results of Rist et al. (2002) and two FE
simulations: (I) a crack which has solely been loaded on its faces by tractions given by
Eq. (20) and (II) the same geometry loaded by gravity, a vertically constant displace-
ment BC, equivalent to the non-cryostatic part of the stress in Eq. (20) and the water15

pressure as stress BC at the ice shelf bottom. As the stress function of Eq. (20) as-
sumes incompressibility, the FE simulation in (II) is conducted with a Poisson’s ratio
of ν→ 0.5. The results are in a good agreement, taking numerical inaccuracies in the
semianalytical results and the FE simulation into account.

3 Dry cracks20

Dry cracks are simulated to validate the model and to analyse the influence of different
material parameters and loading scenarios on the stress intensity factor at the crack
tip. The studies first concentrate on the evaluation of the appropriate type of BCs for
further simulations. Then the influence of the applied load, Poisson’s ratios, density
profiles and Young’s moduli is analysed.25

479

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/6/469/2012/tcd-6-469-2012-print.pdf
http://www.the-cryosphere-discuss.net/6/469/2012/tcd-6-469-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
6, 469–503, 2012

Evaluation of the
criticality of cracks in

ice shelves

C. Plate et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.1 Study A: dependence on type of boundary conditions

Rist et al. (2002), Van der Veen (1997) and Weertman (1973) use stress BCs at the ver-
tical boundaries of the ice shelf. Therefore, the constant or depth varying tensile normal
stress is superposed by the cryostatic pressure of the ice. This approach requires a
hydrostatic stress state within the ice shelf that is only valid if ice can be understood5

as incompressible (ν= 0.5). This is a good approximation for the long term behavior
of ice. In contrast, a fracture event in a brittle medium occurs on a rather short time
scale. The measurements in Rist et al. (2002) indicate brittle material properties for ice.
Therefore it seems more reasonable to take material properties from short time mea-
surements into account, as can be found in Greve and Blatter (2009) and Schulson and10

Duval (2009), where ν ranges between 0.2–0.4. Poisson’s ratios of ν 6= 0.5 have been
used in elastic analyses of ice by Rist et al. (1999), Hulbe et al. (2010) and Konovalov
(2011). The influence of the Poisson’s ratio on the choice of BCs will be presented in
the following chapter, while the influence on the KI is analyzed in Sect. 3.2.

3.1.1 Boundary conditions15

Figure 3a shows two uncracked example geometries of a homogeneous isotropic body,
i.e. ρ= const., with different horizontal BCs (left: constrained, right: unconstrained).
Additionally, the vertical displacement at the basal boundary is constrained in both
configurations, uz(z = 0)= 0. The geometries are solely loaded by gravity. Figure 3b
shows the resulting the normal stress σxx for different Poisson’s ratios and BCs. The20

stress component σzz, that can also be referred to as the ice overburden pressure, is
identical for all simulated Poisson’s ratios and BCs. It equals the horizontal stress for
the constrained boundaries and ν=0.499 (dot-and-dashed line). The horizontal stress
component σxx is affected by both, the changes in the Poisson’s ratio and the BCs. A
Poisson’s ratio of ν=0.499, approximating an incompressible material, leads to a cryo-25

static stress state for the horizontally constrained body, meaning that for every material
point in the body, the normal stress components are equal and shear stresses vanish.
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The value ν=0.499 is a good approximation of the incompressible case (ν=0.5), which
numerically can not be treated with the applied constitutive law as it yields singularities
in the stiffness matrix. For ν=0.3, the body is compressible. This leads for the horizon-
tally constrained body to stresses σxx which are less than half of the stress component
σzz. For a horizontally unconstrained body, the horizontal stress component σxx is iden-5

tical zero. These results show that the assumption of incompressibility overestimates
the crack closing pressure due to the weight of the ice by approximately a factor two.

In a next step we apply the different BCs on the cracked geometry with additional
volume forces (ρ= const.) and water pressure at the bottom boundary. The resulting
stress intensity factors KI for the different BCs and ν=0.3 are shown in Fig. 4a. The ap-10

plied BCs consist of pure tension (a), the equivalent displacement boundary condition
given by Eq. (19) (b) and the superposition of tension and horizontal pressure (c). As
for ν=0.3, the horizontal pressure is not equivalent to the ice overburden pressure (see
Fig. 3b), it has to be evaluated from the horizontal reaction forces of the horizontally
constrained body. For a small load of 100 kPa, the difference between the BCs (b) and15

(c) is marginal. Case (a), with pure tension represents a totally different loading case.
Even though the body is loaded by volume forces, they do not influence the horizontal
stresses. The stress intensity factors for higher loads are on the other hand more sen-
sitive to the choice of the BC as (d) and (e) demonstrate. Figure 4b shows a qualitative
plot of the horizontal normal stress σxx and the deformed shape (exaggerated presen-20

tation, scaled by a factor 100) for stress BCs and equivalent displacement BCs (no
application of gravity or water pressure at the bottom boundary). As displacement BCs
prevent the ice from bending, a bending moment that works against the crack open-
ing is induced and the stress intensity at the crack tip, especially for deeper cracks, is
smaller.25

3.1.2 Load

Next, different loads using displacement BCs are applied on the pre-cracked ice shelf.
Here, the density is chosen as constant over depth (ρ= 910 kg m−3) and ν= 0.3. For
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the evaluation of plausible load cases, the principal stresses in a part of the Wilkins
Ice Shelf are calculated using the velocity field of Braun et al. (2009). The resulting
first principal stress ranges from about −400 kPa to 400 kPa. The purpose of this work
is to analyse the criticality of fractures due to tension in the open ice shelf. Therefore
only positive stresses to a maximum of 300 kPa seem relevant. Figure 5a shows the5

stress intensity factors for displacement BCs equivalent to 0, 100, 200 and 300 kPa. It
is obvious, that for zero boundary displacement, only the ice overburden pressure is
acting on the crack, leading to negative values for KI , which can be interpreted as crack
closure. Non-zero load leads to positive KI , varying with the crack depth. For very small
cracks, the stress intensity factors are low as there is enough unbroken area to absorb10

the load. For deeper initial cracks, the stress intensity factors grow until a maximum
value is reached. Then KI decreases as the influence of the ice overburden pressure
starts to compensate the tensile stress arising from the BCs. The dashed red lines
represent the range for measured values of the critical stress intensity factor KIc, see
Rist et al. (2002). Values of KI beyond the critical value KIc are interpreted as crack15

growth, while values lower than KIc imply stable cracks. It appears that none of the
simulated load cases leads to penetration of initial cracks through the entire depth, as
KI becomes negative before the bottom of the ice shelf is reached. This result is in
good agreement with previous findings by Rist et al. (2002).

3.2 Study B: influence of Poisson’s ratio20

Unlike the results for various constant Young’s moduli (Sect. 3.4), there is a big dif-
ference in the stress intensity factors for different vertically constant Poisson’s ratios
as can be seen in Fig. 5b for a constant density (ρ= 910 kg m−3) and a displacement
BC equivalent to 100 kP. This is due to the coupling between the stresses in x- and
z-direction which is influenced by ν. In other words: for a Poisson’s ratio of ν= 0, the25

normal stress σxx does not experience stress contributions of σzz induced by the body
loads. For ν→0.5, the stress state is hydrostatic for constrained vertical boundaries.
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There is hardly any reliable data on the depth dependence of the Poisson’s ratio.
Therefore, only constant distributions were simulated to obtain a general understanding
of the relation between KI and ν.

3.3 Study C: influence of different density profiles

Previous studies by Rist et al. (2002), Van der Veen (1997), Scambos et al. (2000) and5

Scambos et al. (2009) motivate the necessity to take depth-dependent density profiles
into account. The density of the ice is estimated from the densification model of Herron
and Langway (1980). There are different mechanism of densification, which contribute
to the depth ranges under consideration here. The densification in the upper regime,
driven by grain growth and sintering, down to a density of 550 kg m−3, depends only on10

temperature. Below that the grains form bonds, allowing recrystallisation and deforma-
tion to become dominant and the density depends on temperature and accumulation
rate. As we are lacking in-situ measurements of the mean annual surface temperature
and the accumulation rate of the Wilkins Ice Shelf, we choose upper and lower bounds
for both variables. The mean annual surface temperature of the Wilkins Ice Shelf was15

proposed by Morris and Vaughan (2003) to be −8 ◦C. However, the surface of the
Wilkins Ice Shelf melts every summer and most likely refreezes in winter, so that the
latent heat increases the firn temperatures. Swithinbank (1988) reports a temperature
measured in a drill hole at 5.5 m of −2.5 ◦C. We thus assume −2.5 ◦C as a maximum
mean annual temperature, leading to an almost isothermal ice shelf. The accumula-20

tion rate was given by Vaughan et al. (1993) to be 0.5 m a−1 WE, based on a stake
measurement over a short time period. Thus, we choose for this study additionally
1.0 m a−1 WE, to have an upper estimate.

Exponential fits of the estimated density profiles are presented in Fig. 6a. Addition-
ally, a constant density profile is presented for comparison reasons. Figure 6b shows25

the corresponding stress intensity factors for a displacement load equivalent to 100 kPa
and ν= 0.3. It can be seen, that small differences in the density profiles lead to only
marginal differences in the KI . Nevertheless, we observe, that density profiles with
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larger values at lower depth (270 K, as = 0.5 m a−1 WE) lead to lower KI than more
moderate profiles (264 K, as = 1 m a−1 WE). This effect becomes more obvious when
applying the constant profile, which leads to considerably lower KI . We conclude, that
higher densities lead to a higher ice overburden pressure at the crack tip and therefore
to less tensile stresses which are known to be responsible for larger KI . Rist et al.5

(1999) and Scambos et al. (2009) motivate a density dependent examination of the
critical stress intensity factor KIc ranging from KIc = 50 kPa

√
m for low density firn to

KIc = 150 kPa
√

m for meteoric ice. This, in our model, results in a change in the crit-
ical crack depth of less than 10 m. The variance due to different density profiles or
elastic material parameters is larger, hence the depth dependence of KIc will not be10

considered.

3.4 Study D: influence of Young’s modulus variation

The stress field and the consequential KI resulting from stress boundary value prob-
lems in linear elastic solid mechanics are invariant to the choice of the material pa-
rameters E and ν. In contrast, for displacement BCs as chosen in the present stud-15

ies, the value of E and ν has to be considered. Different constant Young’s moduli do
not change the outcome of the stress intensity factors, considering displacement BCs
which are calculated by Eq. (19). Different results can be expected from depth depen-
dent Young’s moduli. Figure 7 shows the different dependencies of the Young’s mod-
ulus E used in the simulations in which a constant, a linear and an exponential shape20

are considered. The exponential dependency is motivated by the measurements by
Rist et al. (2002). The Poisson’s ratio and the density profile are kept constant with
ν=0.3 and ρ=910 kg m−3, respectively.

Equation (18) shows, that the Young’s modulus is included in the relation between
stress intensity factors and the calculated configurational forces. The simulations pre-25

sented here use the Young’s modulus at the crack tip for the evaluation of KI . As stated
before, the Young’s modulus contributes to the displacement BC, Eq. (19). Therefore
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an equivalent method for the evaluation of ∆u has to be found for varying E . It seems
reasonable to look at two cases. At first, a displacement BC, for which the surface
stress remains the same as in the previous analysis, is simulated. The results are
presented in Fig. 8a. It shows, that for a small surface load of 100 kPa (solid line) only
the exponential function for the Young’s modulus leads to considerably different results.5

For a higher load of 300 kPa (dashed line) the crack reaches into deeper zones where
the Young’s modulus, and therefore the tensile stress, is larger. This results in a strong
variation of the stress intensity factors for all three profiles. Secondly, the displacement
BC are adjusted by the average of the stress component σxx over the depth in an un-
cracked geometry without volume forces. The average stress is equal to the previously10

chosen surface stress. Figure 8b shows that this choice of BCs leads to smaller differ-
ences in the resulting KI for both, a load of 100 kPa (solid line) and 300 kPa (dashed
line).

3.5 Dry cracks: conclusion

Our results achieved by FE simulations on dry cracks support the general findings from15

previous studies by Nye (1955), Weertman (1973), Smith (1976), Van der Veen (1997)
and Rist et al. (2002): dry surface cracks under reasonable tensile loading won’t reach
the base of the ice shelf. The importance to consider depth dependent density profiles
was affirmed (Van der Veen, 1997; Rist et al., 2002). Our results showed an increase
of the crack depth by ≈50 % in comparison to the constant profile. Our analyses differ20

from previous findings in the applied BCs and the associated choice of material param-
eters. Here the influence of the chosen Poisson’s ratio of ν=0.3 has to be emphasized.
The higher stress concentration at the crack tip could only be marginally reduced by
the crack stabilising effect of displacement BCs. This, in conclusion, leads to larger
crack depth under comparable geometry and loading conditions. Beyond that, for the25

first time, the influence of depth varying Young’s moduli and different vertically constant
Poisson’s ratios for cracks in ice was investigated. It shows that the influence of differ-
ent Young’s modulus profiles is significant and strongly depends on the choice of BCs.
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The Poisson’s ratio proves to be the most important parameter for the analysis of crack
criticality. Values of ν ranging between 0.2 and 0.5 show results varying from no crack
growth to cracks only stabilising at 70 m depth for equal loading.

4 Wet cracks

The results above show, that even though changing material parameters and loadings5

have a strong influence on the stress intensity factors at the crack tip, hardly any of the
simulated configurations would cause a break through of an initial crevasse. It seems
reasonable to consider some additional loading as for example due to water of differ-
ent origin inside the crevasses. Previous studies by Weertman (1973), Van der Veen
(1997), Rist et al. (2002) and Scambos et al. (2000) show, that water pressure on the10

crack faces can lead to a crevasse breaking the ice shelf. However, as these studies
have been conducted using a Poisson’s ratios of ν= 0.5, the influence of the ice over-
burden pressure σzz as a crack closing factor has been overestimated. This leads to
the conclusion, that for reasonable tensile loadings, a deep crack had to be almost en-
tirely filled to break through. The following simulations show, that for different material15

properties, even less water leads to critical situations. The simulations are conducted
using the depth-dependent density profile of Fig. 6 (Ts = 264 K,as = 0.5 m a−1 WE), a
constant Young’s modulus and a Poisson’s ratio of ν=0.3 unless stated differently.

4.1 Study A: surface melt water

Figure 9a visualises the model for rising melt water within a crack. For the depth de-20

pendent density profile as shown in Fig. 6 (Ts = 264 K,as = 0.5 m a−1 WE) pore closure
is reached at about 50 m depth. We assume that melt water can rise inside a crack
as long as the water-level hw is below the pore closure. The simulation is conducted
for three different displacement BCs equivalent to 100, 200 and 300 kPa. For these
simulations, the crack depth is kept constant at the depth for which the unfilled crack25
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was about to reach crack closure, which is indicated by negative values for KI . This
leads to a crack depth of 66 m for 100 kPa, 122 m for 200 kPa and 172 m for 300 kPa.
Figure 9b shows the resulting stress intensity factors as a function of the water-level
for the applied loading. We find that the critical stress intensity factors are reached for
only 10 to 20 m high water columns inside the crack. The crack corresponding to a5

100 kPa load can be filled up to hw =16 m before the water reaches permeable ice. As
for this water level the stress intensity factors are critical, it is interesting to evaluate
how deep this crack would penetrate. Figure 9c visualises the stress intensity factor for
various crack depths, considering an equivalent to 100 kPa tensile loading and 16 m
water filling, starting at a crack depth of 66 m. KI increases for few more meters before10

the influence of the ice overburden pressure starts to dominate the stress state at the
crack tip and the stress intensity factor decreases. Crack closure is reached before the
crack can break through. Sufficient additional melt water supply at deeper crack depths
will, however, lead to crevasse penetration.

4.2 Study B: brine infiltration15

Cracks in a closer proximity to the calving front can be exposed to brine infiltration
through porous firn. These cracks are therefore always filled up to sea level as visu-
alised in Fig. 10a. Nevertheless, the pressure of brine inside the ice shelf, as well as
on the crack faces, for z between the sea level and pore closure depth compensates
and does not increase the stress intensity at the crack tip. The load on the crack faces20

therefore rises linearly from the constant load of pc = (hw −hPC)ρswg at pore closure
depth to the maximum load of pc = hwρswg at the crack tip. Figure 10b shows the
resulting stress intensity factors starting at d = 0 m. The stress intensity factors for
crack depths less than d = 50 m are equivalent to those for the unfilled cracks with
exponentially fitted density profiles. Cracks below pore closure are exposed to water25

pressure and therefore show increasing stress intensity factors. By trend, all these
cracks would break through.
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This leads to the question: How much water is required for a crevasse to break
through? Table 1 shows the water level required to reach critical stress intensity factors
for 249 m deep cracks.

We find that increasing the load within the applicable range of 300 kPa only leads to a
decrease in the required water level for penetration of less than 30 m for both simulated5

magnitudes of Poisson’s ratio. On the other hand, a decreasing Poisson’s ratio from
ν= 0.5 to ν= 0.3 leads to a decrease in the required water level of ≈90 m representing
a decrease by ≈50 % for all simulated loads.

4.3 Wet cracks: conclusion

The studies on wet cracks could confirm previous findings on water filled cracks: water10

pressure on the crack faces profoundly increases the criticality of cracks and can lead
to crack penetration where unfilled crevasses are stable. However, it has to be men-
tioned that continuous water supply is needed as crevasses in an ice shelf of 250 m
thickness need to be filled up to 91 m–119 m, depending on the load, to reach penetra-
tion. The study repeatedly showed that the choice of the Poisson’s ratio is more crucial15

to the evaluation of crack criticality than the applied load, a finding that has not been
discussed in previous studies.

5 Summary

Finite elements in combination with configurational forces proved to be a comfortable
numerical tool for the evaluation of crack criticality under different setups. The choice20

of a valid rheological model for cracks in ice in combination with appropriate BCs
and material parameters turned out to be crucial for a physical understanding the of
fracture mechanism that lead to disintegration of ice shelves. We showed that espe-
cially the Poisson’s ratio and the associated compressible or incompressible treatment
of ice during fracture plays an important role that has hardly been discussed so far.25
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Schulson and Duval (2009) and Rist et al. (2002) showed a density and therefore depth
dependence of the Young’s modulus. The use of finite elements allowed us to evaluate
the influence of the depth dependence on the criticality of cracks. It showed that for
the prescribed surface stress, the depth dependent and therefore exponential function
for the Young’s modulus doubled the critical crack depth. However, depth dependent5

Young’s moduli raised the questions which choice of BCs is appropriate for cracks in
floating ice shelves and how the interaction between ice dynamics and linear elastic
fracture mechanics should be formulated. Despite the different choice of BCs and ma-
terial parameters, the studies showed that for the applied loading, dry surface cracks
will not penetrate an ice shelf. Also the general findings of previous studies on wa-10

ter filled surface cracks could be affirmed. Nevertheless our choice of the appropriate
Poisson’s ratio lead to ≈50 % less water required for crevasse penetration.
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Table 1. Critical water level (WL) at 249 m crack depth in a 250 m thick ice shelf for different
loads and Poisson’s ratios.

load ν=0.5 ν=0.3

∆u =̂0 kPa WL=210 m WL=119 m
∆u =̂100 kPa WL=202 m WL=110 m
∆u =̂200 kPa WL=194 m WL=101 m
∆u =̂300 kPa WL=185 m WL=91 m
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Fig. 1. Model geometry for dry cracks.
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Fig. 2. (a) Difference between numerical simulation and analytical result for different mesh
sizes. (∆x = element edge length at crack tip). (b) Discretization in entire geometry with focus
at crack tip.
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Fig. 1. (a) Model geometry for dry cracks. (b) Discretization in entire geometry with focus at
crack tip. (c) Difference between numerical simulation and analytical result for different mesh
sizes. (∆x= element edge length at crack tip).
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Fig. 1. (a) Model geometry for dry cracks. (b) Discretization in entire geometry with focus at
crack tip. (c) Difference between numerical simulation and analytical result for different mesh
sizes. (∆x=element edge length at crack tip).
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Fig. 2. (a) Resulting horizontal stress and stress intensity factors. (b) Comparison of the
numerical model to results of Rist et al. (2002).

26

Fig. 2. (a) Resulting horizontal stress and stress intensity factors. (b) Comparison of the
numerical model to results of Rist et al. (2002).
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Fig. 3. (a) Uncracked model for the evaluation of proper BCs, with constrained (left) and un-
constrained (right) vertical boundaries. (b) Normal stress σxx for the uncracked model.
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Fig. 4. (a) Stress intensity factors for different BC. (b) Qualitative contour plot of the normal
stress σxx for displacement and equivalent stress BC.
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Fig. 5. (a) Stress intensity factors for different loads. (b) Stress intensity factors resulting from
different constant Poisson’s ratios.
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Fig. 5. (a) Stress intensity factors for different loads. (b) Stress intensity factors resulting from
different constant Poisson’s ratios.
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Fig. 6. (a) Applied density profiles estimated from the densification model of Herron and Lang-
way (1980) and an additional constant profile with ρ= 917 kg m−3. (b) Stress intensity factors
resulting from different density profiles.
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Fig. 7. Simulated depth-dependent Young’s modulus functions.
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Fig. 8. (a) Stress intensity factors resulting from different Young’s modulus profiles with surface
stresses equal to previous simulations (drawn through line, ∆u =̂ 100kPa surface stress, dashed
line, ∆u =̂ 300kPa surface stress). (b) Stress intensity factors resulting from different Young’s
modulus profiles with resulting depth integrated tensile stresses equal to previous simulations
(drawn through line, ∆u =̂ 100kPa depth integrated tensile stress, dashed line, ∆u =̂ 300kPa
depth integrated tensile stress).
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Fig. 8. (a) Stress intensity factors resulting from different Young’s modulus profiles with sur-
face stresses equal to previous simulations (drawn through line, ∆u =̂ 100 kPa surface stress,
dashed line, ∆u =̂ 300 kPa surface stress). (b) Stress intensity factors resulting from differ-
ent Young’s modulus profiles with resulting depth integrated tensile stresses equal to previous
simulations (drawn through line, ∆u =̂ 100 kPa depth integrated tensile stress, dashed line,
∆u =̂300 kPa depth integrated tensile stress).
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Fig. 9. (a) Model geometry for melt water filled cracks. (b) Stress intensity factors for varying
water levels in three different cracks of constant depth and corresponding loading. (c) Stress
intensity factors for 16m water level for varying crack depth and a load of ∆u =̂ 100kPa.
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Fig. 9. (a) Model geometry for melt water filled cracks. (b) Stress intensity factors for varying
water levels in three different cracks of constant depth and corresponding loading. (c) Stress
intensity factors for 16 m water level for varying crack depth and a load of ∆u =̂100 kPa.
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Fig. 16. (a) Model geometry for brine infiltration. (b) Stress intensity factors for varying crack
depth under different loads and brine infiltration.
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Fig. 10. (a) Model geometry for brine infiltration. (b) Stress intensity factors for varying crack
depth under different loads and brine infiltration.
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